

2

I, Jesse D. Kornblum, declare as follows:

1. I am a Computer Forensics Researcher with Kyrus Technology. I make this

declaration in support of Plaintiffs’ Application For An Emergency Temporary Restraining

Order, Seizure Order And Order To Show Cause Re Preliminary Injunction. I make this

declaration of my own personal knowledge and, if called as a witness, I could and would testify

competently to the truth of the matters herein.

2. I have over years of twelve years of experience in the field of computer and

information security. I began my career as a Computer Crime Investigator with the U.S. Air

Force Office of Special Investigations. Subsequently, I became Chief of Research and

Development and ultimately Chief of the Computer Crime Investigations Division of the Air

Force Office of Special Investigations. I have had roles as an instructor of computer science at

the U.S. Naval Academy and Lead Information Technology Specialist with the U.S. Department

of Justice, Computer Crimes and Intellectual Property Section. Most recently, I have had

forensic research roles in the private sector. Currently, I am employed by Kyrus Technology, a

technology company focused on reverse engineering, vulnerability research, computer forensics,

and specialized software development related to computer security matters. A true and correct

copy of my curriculum vitae is attached as Exhibit A to this declaration.

3. We were asked to conduct the underlying analysis to determine the similarity

between copies of the Zeus Trojan botnet source code (“Zeus”) and myriad binaries distributed

by malicious actors. A “Trojan” program is a malicious program disguised as a legitimate

application that is typically used to introduce viruses onto a computer or network. Our analysis

is broken down into three main phases and is attached hereto as Exhibit B.

4. The first phase included an analysis of five portable executable binaries (“PE

binaries”) to determine a connection between these PE binaries and Zeus. A portable executable

binary is a file which contains code and resources for executing on a computer running the

Microsoft Windows operating system.

5. The second phase involved the analysis of three sets of binaries related to the

3

SpyEye, ICE-IX, and PCRE (aka “Zeus”) Trojans. These programs are recognized in the

industry as being associated with “malware,” otherwise known as malicious software designed to

disrupt or damage a computer, computer system, or network, or to gain sensitive information, or

unauthorized access to computer systems.

6. In the third and final phase, we analyzed email messages sent by malicious actors

that purported to be from the National Automated Clearing House Association, the trade

organization for the ACH (direct deposit) system, to determine the functionality of links

contained in the body of the emails. These three phases are described in more detail below.

7. Based on our analysis, we have concluded the following:

a. It is highly probable that the PE binaries are copies of Zeus.

b. The analyzed binaries related to SpyEye and ICE-IX are each highly similar to

Zeus and support a finding that Zeus was developed with malicious intent.

c. The email messages purportedly sent from the National Clearing House

Association were designed to drive recipients to websites which would infect

them with malware.

I. ANALYSIS

A. Phase I

8. We were provided 70 binary files, five of which were PE binaries. Of these five,

four were packed using various means. A “packed” binary refers to an executable computer

program which has been compressed and/or obfuscated. When executed, such programs use

functionality added during the packing to return themselves to a functional equivalent of their

original form.

9. The four packed binaries were unpacked to determine the functionality of their

executable code. Ex. B at 5. Executable code is the set of sequential instructions executed by a

computer and are generated from a programmer’s source code. The source code is the

“blueprints” of the software, dictating what the program will do and how it will do it. The

unpacked binary—2cc1076f3c6e65d0a59792b75370b04613258ffa—was used as a baseline for

4

functionality because no modifications to the binary were needed. Id. Every other packed

executable was then compared against this baseline. Below are the PE binaries analyzed in

Phase I:

 2cc1076f3c6e65d0a59792b75370b04613258ffa (baseline)
 0cc6215d31e5e639a19b4ceb3d57ce64d62e9b2c (packed version 1)
 9b259bc255fef873f1e41629fb67c30f0c40e5dc (packed version 2)
 1bfdc4f2cfa48a1f063d1826992fbaf5e2924394 (packed version 3)
 bfcc02219321d1047cc0330454a61f6b276d06f6 (packed version 4)

10. We applied a number of analytic tools to the five PE binaries to determine the

commonality between them and Zeus, using the unpacked PE binary as a baseline.

11. First, we conducted an analysis of each binary using “Virus Total.” Virus Total is

a service that applies a number of Anti-Virus products to analyze suspicious files and URLs and

detects the presence of malware, including Trojans. This analysis revealed a significant number

of the Anti-Virus products applied by Virus Total identified these PE binaries as malicious.

Indeed, for almost all of the PE binaries, a majority of the Anti-Virus products determined that

the binary was malicious. See Ex. B at 6, 8, 10, 12 and 13. These findings are consistent with

our conclusion that these binaries contain malicious software.

12. Next, we conducted an “Entry Point Analysis” to determine whether we had

successfully unpacked a binary and to determine whether two binaries came from the same

source code base. The “entry point” is the address of the first instruction to be executed in a

binary. Because of the nature of the computer architecture, the first instruction is not necessarily

at the beginning of the file. Here we compared the entry point code of the baseline PE binary to

each of the four packed PE binary files. See Ex. B at 6-7, 9, 11, 13, and 14. In this case, the

functionality of the entry point code was to disable any error message that may pop up during

execution, and to attempt to get any command line arguments. See Ex. B at 7. Our comparisons

determined that all five PE binaries are compiled from the same source base. Ex. B at 6-7, 9, 11,

13, and 14.

13. For the next analysis, we applied a Zynamics BinDiff program to the PE binaries.

Zynamics BinDiff is a comparison tool that detects the similarities and differences between

5

binary files. We applied Zynamics BinDiff to compare the four unpacked PE binaries’

executable code to that of the baseline. Ex. B at 9, 11, 13, and 15. An “executable file”

determines the functionality of the binary. For all but one of the four packed PE binaries, our

analysis determined that there was a significant overlap between each packed PE binary and the

baseline binary. Id. For one unpacked PE binary, however, the Zynamics BinDiff program was

unable to make a proper comparison against the baseline. Id. at 13. The significant similarities

between the functions of the PE binaries (with the exception of one PE binary) indicate that the

PE binaries have been compiled from the same source code.

14. Our entry point and Zynamics BinDiff analyses establish that all five PE binaries

were compiled from the same code base. Id. at 15.

15. After determining that all five PE binaries were compiled from the same code, we

compared the PE binary to that of Zeus to determine their similarities. We were able to obtain

publicly available copies of the Zeus source code and compiled our own copy of Zeus to

compare to each of the PE binary files described above. Ex. B at 15. Using Zymanics BinDiff,

we ran a comparison of the executable baseline PE binary, with that of our compiled Zeus source

code. Id. at 16. The comparison showed the baseline and our compiled versions are identical.

Id. In other words, we determined that our samples are compiled versions of Zeus. Id.

16. Following this comparison, we searched for functions within our copy of Zeus

that had a very low probability of being duplicated or copied by accident. We were able to

determine that in every case, there was an exact or extremely high match between our copy of

Zeus and the PE binaries that we analyzed. Id.

17. We also compared the PE binaries with our compiled version of Zeus using a

program called The Interactive Disassembler (“IDA”) to find and extract control flow graphs

from both the binaries and Zeus. Id. at 17. Programs, like Zeus and binaries, are defined by a

sequence of statements. Id. at 16. Each statement is an instruction to perform a discrete

operation. These statements are linked together into a graph. Id. At every point where a value is

tested, a statement can conditionally branch to a new node in the graph depending on the value.

6

Id. In this way, any logical instructions can be represented by computer code. Id. By using

IDA, we were able to compare each of the PE binaries to the Zeus binary we compiled in graph

form. See Ex. B at 16-22. These graphs are almost identical across each program. Id. at 21. We

were also able to extract the specific functions within each program to compare to the other

binaries. Id. at 24. Our results indicate that for the functions identified in the binaries, almost all

of them are structurally identical to functions that are within Zeus. Id.

18. The similarities between Zeus and the PE binaries also show that it is highly

likely that Microsoft compilers were used to build these versions of Zeus. A “Microsoft

compiler” is a tool used to convert source code written by a programmer into a Window-based

PE executable. When comparing the source code in Zeus to each PE binary, we were able to

identify identical blocks of source code for identical functions in each. Ex. B at 22-23. This is

significant given the fact that different compilers write different code to carry out the same

function. Id. at 23-24. It is highly probable, then, that Zeus and the PE binaries were both

developed using Microsoft compilers, providing additional support for our conclusion that the

PE binaries are copies of Zeus.

19. Finally, we used the industry standard “fuzzy” hashing technique to compare the

PE unpacked binaries and Zeus. Id. at 24-25. This technique allows for the comparison of files

after converting the code into individual hashes, making it easily readable. We used this

technique to compare files found in both the unpacked binaries and Zeus. Id. The files were

found to be similar—with large stretches of identical patterns of bytes, consistent with our

conclusion that these files are essentially the same. Id.

B. Phase II

20. For the second phase, we analyzed three sets of binaries and compared the

capabilities of a sample from all three to the Zeus source code. These sets of binaries, which are

regarded as malicious software in the industry, include: 1) PCRE, 2) SPYEYE, and ICE-IX.

21. We were unable to analyze the PCRE binary because this sample did not contain

valid applications to analyze and were likely encoded with a password that was not provided.

7

Ex. B at 26.

22. We analyzed the SPYEYE sample set by reverse engineering a selected file,

b33064449295083dbfec12634523d805. Id. After reverse engineering this file, we were able to

determine that the capabilities of this binary are: 1) windows enumeration, 2) take screenshot of

desktop, 3) retrieve clipboard data, 4) keyboard logging, 5) retrieve system information, 6)

communicate with C&C server using HTTP, 7) enumerate user accounts, 8) file search, 9)

remote process code injection, 10) manipulate windows registry, 11) process enumeration, 12)

read arbitrary file contents, 13) standard TCP socket communication, and 14) download and

execute payloads. Id.

23. We next analyzed the ICE-IX sample using the file

3c6839c4ce744c9c0ddf2ba06963c3f4. Id. After reverse engineering the binary we determined

that its capabilities included: 1) take screenshot of desktop, 2) remote process code injection, 3)

retrieve system information, 4) user account enumeration, 4) keyboard logging, 5) process

enumeration, 6) file search capability, 7) get contents of arbitrary file, 8) encrypt/decrypt data

using the Windows crypto API, 9) manipulate windows registry, 10) communicate with C&C via

HTTP; 11) Standard TCP socket communication, and 12) download and execute payloads. Id. at

27.

24. We then compared the Zeus binaries and to SPYEYE and ICE-IX and determined

that the functionality is very similar. Specifically, Zeus supports the following capabilities: 1)

take screenshot of desktop, 2) remote process code injection, 3) retrieve system information, 4)

keyboard logging, 5) VNC server, 6) HTTP injection, 7) communicate with C&C via HTTP; 8)

download and execute payloads, 9) process enumeration, 10) self delete using bat file, 11)

intercept Windows API functions, and 12) manipulate Windows Registry. This finding of

similar capabilities supports our conclusion that the Zeus binaries were developed with malicious

intent.

C. Phase III

25. In the final phase of our analysis, we examined e-mails purportedly sent by the

EXHIBIT A

Jesse D. Kornblum

Kyrus Technology jesse.kornblum@kyrus-tech.com

Sterling, VA http://jessekornblum.com/

Education
M. Eng., Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1999

B.S. Computer Science, Massachusetts Institute of Technology, 1999

Employment
Kyrus Technology Corporation 2010-Present
Computer Forensics Research Guru Sterling, VA

ManTech International Corporation 2005-2010
Senior Computer Forensic Scientist Falls Church, VA

United States Department of Justice 2004-2005
Lead Information Technology Specialist,
Computer Crime and Intellectual Property
Section

Washington D.C.

United States Naval Academy 2003-2004
Instructor, Computer Science Department Annapolis, MD

Air Force Office of Special Investigations 2003
Chief, Computer Investigations and Operations Andrews AFB, MD

Air Force Office of Special Investigations 2001-2003
Chief of Research and Development, Computer
Investigations and Operations

Andrews AFB, MD

Air Force Office of Special Investigations 1999-2001
Computer Crime Investigator Andrews AFB, MD

Service

Member of the Editorial Board for the journal Digital Investigation

Technical Program Committee Member for Digital Forensic Research Workshop 2005-2010

Technical Editor for Windows Forensic Analysis by Harlan Carvey

Member of the DFRWS Common Digital Evidence Storage Format Working Group

Awards and Honors

USNA Computer Science Department “Top Geek”, Fall 2003

HQ AFOSI Company Grade Officer of the Quarter, 2nd Quarter 2002

Jesse D. Kornblum

Refereed Papers
J. Kornblum, Implementing BitLocker Drive Encryption for Forensic Analysis, Digital Investigation,
5(3): 75-84, March 2009.

J. Kornblum, Auditing Hash Sets: Lessons Learned from Jurassic Park, Digital Forensic Practice,
2(3):108-112, July 2008.

E. Libster and J. Kornblum, A Proposal for an Integrated Memory Acquisition Mechanism, Operating
Systems Review, 42(3):14-20, April 2008.

J. Kornblum, Using Every Part of the Buffalo in Windows Memory Analysis, Digital Investigation,
4(1):24-29, March 2007.

J. Kornblum, Exploiting the Rootkit Paradox with Windows Memory Analysis, International Journal
of Digital Evidence, 5(1), Fall 2006.

B. Carrier, E. Casey, S. Garfinkel, J. Kornblum, C. Hosmer, M. Rogers, and P. Turner, Standardizing
Digital Evidence Storage, Communications of the ACM, February, 2006.

J. Kornblum, The Linux Kernel and the Forensic Acquisition of Hard Disks with an Odd Number of
Sectors, International Journal of Digital Evidence, Volume 3(2), Fall 2004.

Conference Papers
J. Kornblum Using JPEG Quantization Tables to Identify Imagery Processed by Software, Digital
Investigation, 5(S):21-25, Proceedings of the Digital Forensic Workshop, August 2008.

J. Kornblum, Identifying Almost Identical Files Using Context Triggered Piecewise Hashing, Digital
Investigation, 3(S):91-97, Proceedings of the Digital Forensic Workshop, August 2006.

J. Kornblum, Preservation of Fragile Digital Evidence by First Responders, Digital Forensic Research
Workshop, Syracuse, NY, August 2002.

Other Publications
J. Kornblum, When I’m Sixty Four (Bits), ManTech Tech Note 2009-01, August 2009.

Forensic Tools
J. Kornblum findaes, Finds AES key schedules

J. Kornblum hashdeep, Audits a set of known hashes against a given directory, 2008.

J. Kornblum, Miss Identify, Identifies PE executables that do not have an executable extension.
Optionally identifies all executables in a set of input files, 2008.

J. Kornblum, dc3dd, a version of GNU dd patched for computer forensics, 2008.

J. Kornblum, ssdeep, Computes and matches context triggered piecewise hashes, also called fuzzy
hashing. Matches similar but not identical files, 2006.

J. Kornblum, md5deep, A set of recursive programs for computing MD5, SHA-1, SHA-256, Tiger,
and Whirlpool hashes. Capable of both positive and negative matching, 2002.

J. Kornblum, Investigator Controlled Evidence Extraction Engine (ICE3). Boot CD for
automated disk imaging.

J. Kornblum, First Responder’s Evidence Disk (FRED). Automated Windows incident response
tool.

K. Kendall, J. Kornblum, N. Mikus, foremost. A linux based file carving program. Recovers files
from disk images based on their headers and footers, 2001.

EXHIBIT B

PROPRIETARY AND CONFIDENTIAL

b71 Binary Analysis Report

PROPRIETARY AND CONFIDENTIAL

Page 2 of 42

Table of Contents
Executive Summary ... 4

Phase I ... 5

Binary: 2cc1076f3c6e65d0a59792b75370b04613258ffa .. 5

Virus Total Results .. 6

Entry Point Analysis ... 6

Binary: 0cc6215d31e5e639a19b4ceb3d57ce64d62e9b2c .. 7

Virus Total Results .. 8

Entry Point Execution Flow Comparison ... 9

BinDiff Analysis .. 9

Binary: 9b259bc255fef873f1e41629fb67c30f0c40e5dc .. 10

Virus Total Results ... 10

Entry Point Execution Flow Analysis .. 11

BinDiff Analysis ... 11

Binary: 1bfdc4f2cfa48a1f063d1826992fbaf5e2924394 .. 12

VirusTotal Results .. 12

Entry Point Execution Flow Analysis .. 12

BinDiff Analysis ... 13

Binary: bfcc02219321d1047cc0330454a61f6b276d06f6 ... 13

Virus Total Results ... 13

Entry Point Execution Flow Analysis .. 14

BinDiff Analysis ... 14

Initial Conclusion ... 15

Follow-Up Questions .. 15

Fuzzy Hashing .. 24

Phase II ... 26

PCRE ... 26

SPYEYE .. 26

ICE-IX ... 26

Zeus .. 27

Conclusion .. 27

E-mail Analysis ... 27

Appendix A ... 30

Appendix B ... 32

PROPRIETARY AND CONFIDENTIAL

Page 3 of 42

Appendix C .. 34

Appendix D ... 36

Appendix E.. 38

Appendix F .. 40

PROPRIETARY AND CONFIDENTIAL

Page 4 of 42

Executive Summary

Our analysis of over 70 binaries reveals a great deal of commonality between known
copies of the Zeus Trojan and myriad binaries being distributed by malicious actors.

Our effort was broken down into three main phases. In the first phase we analyzed
five PE binaries. Four of the five were packed using various means. We unpacked
them and subjected them to a variety of analysis techniques in an attempt to
connect them to the Zeus malware. In each case the results were highly probable
that the binaries were in fact copies of Zeus.

In the second phase we were provided with several hundred binaries that were
known or suspected to be related to the SpyEye, ICE-IX, and PCRE Trojans. Our
analysis revealed that of the binaries we were able to analyze, each were highly
similar to Zeus.

In the third and final phase we analyzed email messages sent by malicious actors
that purported to be from the National Automated Clearing House Association, the
trade organization for the ACH (direct deposit) system. These messages were
designed to drive recipients to infect themselves with malware.

PROPRIETARY AND CONFIDENTIAL

Page 5 of 42

Phase I

We were provided 70 binaries, five of which were PE binaries. Of the five PE
binaries, four were packed using various means. Those 4 were unpacked and the
import tables were reconstructed for viewing in IDA Pro to determine the
functionality of the executable. The unpacked binary:

2cc1076f3c6e65d0a59792b75370b04613258ffa

was used as a baseline for functionality because no modifications to the binary were
needed. Every other packed executable was then compared against this baseline
executable. Below are the binaries we are addressing in this paper:

● 2cc1076f3c6e65d0a59792b75370b04613258ffa (baseline)
● 0cc6215d31e5e639a19b4ceb3d57ce64d62e9b2c (packed version 1)
● 9b259bc255fef873f1e41629fb67c30f0c40e5dc (packed version 2)
● 1bfdc4f2cfa48a1f063d1826992fbaf5e2924394 (packed version 3)
● bfcc02219321d1047cc0330454a61f6b276d06f6 (packed version 4)

Binary: 2cc1076f3c6e65d0a59792b75370b04613258ffa

This binary was not packed and we did not modify it before analyzing it. We are
using it as our baseline for functional commonality. It contains the following
functionality:

● HTTP communication capability

● Remote Process Injection. Uses WriteProcessMemory to inject executable
code into a remote process. Generally this is either used by debuggers or
malware. Since this binary has no debugger functionality, we assume the
reason for its inclusion is malicious.

● Screenshot Capability. Allows this application to save and send back

screenshots to the server. This allows an attacker to see what exactly is
showing on the victim’s screen.

● VNC-Type Server Functionality. Allows the attacker to control the mouse and

keyboard of the victim’s computer.

● Keyboard Logging Capabilities. Allows the attacker to send keystrokes to a
server to get victim’s passwords that are typed into the keyboard.

PROPRIETARY AND CONFIDENTIAL

Page 6 of 42

● Firefox Browser Logging. Hooks nspr4.dll to allow logging of all http and
https activity to a file. This file is downloaded from the attacker to view all
browsing activity.

● Windows mail download. Allows the attacker to view the victim’s email if the

user uses Windows Mail or Outlook Express.

● Self-Delete using a bat file.

Virus Total Results

Appendix A shows the results from Virus Total. When submitting the hash to virus
total it is identified by most AVs as Zbot. 33 out of 43 engines detected this binary
as malicious.

Entry Point Analysis

Figure 1 (2cc1076f3c6e65d0a59792b75370b04613258ffa Entry Point)

PROPRIETARY AND CONFIDENTIAL

Page 7 of 42

Figure 1 shows our baseline executable entry point. These are one of the metrics we
used to determine if we had successfully unpacked a binary and to determine if two
binaries came from the same code base. The code in Figure 1 essential just disables
any error messages that may pop up during execution, and attempts to get any
command line arguments.

Binary: 0cc6215d31e5e639a19b4ceb3d57ce64d62e9b2c

We unpacked this binary, and the others, using a manual combination of WinDbg,
IDA Pro, and Imprec.

The first stage decoder is at 43E000, looks like it is copied to a virtual alloc’d buffer,
in this case 0x9b0000. This buffer contains an MZ header and is stage2 of the
decoder. We continued until we find another MZ header in a virtual alloc’d buffer, in
this case we found that it does another iteration of decoding. Another virtual alloc’d
buffer was found at a00000:

0:000> dc a00000
00a00000 6c385348 4b32686e 4f6f5a4e 50704364 HS8lnh2KNZoOdCpP
00a00010 45705864 3271775a 7058616c 55547043 dXpEZwq2laXpCpTU
00a00020 4c42674d 4549754c 6f68516f 6e445069 MgBLLuIEoQhoiPDn
00a00030 3234754f 59342f5a 2b30326c 31465636 Ou42Z/4Yl20+6VF1
00a00040 376f656d 7344524d 58564362 55477330 meo7MRDsbCVX0sGU
00a00050 686f7538 76423147 746a6163 36433841 8uohG1BvcajtA8C6
00a00060 71506461 78396f4f 4e4b4863 2b4c776b adPqOo9xcHKNkwL+
00a00070 33756f4f 53726642 74587773 63735a6a Oou3BfrSswXtjZsc

Another virtual alloc’d buffer:

0:000> db 00a50000
00a50000 58 50 58 41 58 43 58 4b-00 32 02 00 cc 33 01 00
XPXAXCXK.2...3..
00a50010 00 26 96 8e 70 00 17 f7-ec 05 bb ea f4 ff 94 01
.&..p...........
00a50020 2f 44 ef 7c e6 f5 d8 e8-08 04 cb d1 e8 7b d6 d9
/D.|.........{..
00a50030 98 f0 63 6c dd 0b 4b 4e-b9 fc a4 17 0c f0 54 53
..cl..KN......TS
00a50040 3b b0 ae 1c 70 86 0f 1b-ae a2 22 07 9b b7 67 57
;...p....."...gW
00a50050 9a 97 04 02 e8 9b a9 7e-08 fc a7 7e 8a 9a 93 d3
.......~...~....
00a50060 6f 46 7e 3b 8f 17 61 b1-62 4f 90 4f e8 48 8e 46
oF~;..a.bO.O.H.F
00a50070 48 76 78 70 fe 35 75 0c-d0 7a 82 c3 f3 17 9e e0
Hvxp.5u..z......

…and another…

PROPRIETARY AND CONFIDENTIAL

Page 8 of 42

0:000> db 00a10000
00a10000 4d 5a 90 00 03 00 00 00-04 00 00 00 ff ff 00 00
MZ..............
00a10010 b8 00 00 00 00 00 00 00-40 00 00 00 00 00 00 00
........@.......
00a10020 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
................
00a10030 00 00 00 00 00 00 00 00-00 00 00 00 d8 00 00 00
................
00a10040 0e 1f ba 0e 00 b4 09 cd-21 b8 01 4c cd 21 54 68
........!..L.!Th
00a10050 69 73 20 70 72 6f 67 72-61 6d 20 63 61 6e 6e 6f is program
canno
00a10060 74 20 62 65 20 72 75 6e-20 69 6e 20 44 4f 53 20 t be run in
DOS
00a10070 6d 6f 64 65 2e 0d 0d 0a-24 00 00 00 00 00 00 00
mode....$.......
0:000> !vprot a10000
BaseAddress: 00a10000
AllocationBase: 00a10000
AllocationProtect: 00000004 PAGE_READWRITE
RegionSize: 00024000
State: 00001000 MEM_COMMIT
Protect: 00000004 PAGE_READWRITE
Type: 00020000 MEM_PRIVATE
0:000> .writemem C:\stage3.bin a10000 L24000

Stage3.bin is basically the same as the unpacked version. We finally got the
unpacked version of this binary and were able to successful compare it with the
baseline binary. We determined that it was compiled from the same source base as
the baseline binary.

Virus Total Results

Appendix B shows the detailed VirusTotal results. A majority (28/43) of the AV
engines in VirusTotal identified this binary as malicious.

PROPRIETARY AND CONFIDENTIAL

Page 9 of 42

Entry Point Execution Flow Comparison

Figure 2 (0cc6215d31e5e639a19b4ceb3d57ce64d62e9b2c unpacked entry point)

Figure 2 is the entry point disassembled in IDA Pro. Notice how Figure 1 (baseline
binary entry point) and Figure 2 are essentially identical even in the registers used.
We determined from this analysis that we were on track to show the binaries were
compiled from the same code base.

BinDiff Analysis

Zynamics BinDiff was used to do a full binary comparison between executables. It
can quickly show functions that are identical using different methods like edge
flowgraphs and call reference matching. Figure 3 shows a subset of the matched
functions.

PROPRIETARY AND CONFIDENTIAL

Page 10 of 42

Figure 3 (0cc6215d31e5e639a19b4ceb3d57ce64d62e9b2c Bindiff against baseline)

In total, 905 functions were matched with BinDiff. 899 functions were matched
with a similarity rating of 1.0 and confidence of greater than .9. To get this much
similarity between these 2 binaries, they both must have been compiled from the
same source code.

Binary: 9b259bc255fef873f1e41629fb67c30f0c40e5dc

This binary needed to be unpacked to get its decoded contents. It was packed with
the UPX packer.

Virus Total Results

22/43 anti-virus engines detected this binary as malicous. Appendix C has the
detailed results.

PROPRIETARY AND CONFIDENTIAL

Page 11 of 42

Entry Point Execution Flow Analysis

Figure 4 (9b259bc255fef873f1e41629fb67c30f0c40e5dc unpacked entry point)

After unpacking Figure 4 shows the same resemblance. Comparing Figure 1 and
Figure 4 shows that the entry points are identical.

BinDiff Analysis

We used Zynamics BinDiff to compare this binary against our baseline.

PROPRIETARY AND CONFIDENTIAL

Page 12 of 42

Figure 5 (9b259bc255fef873f1e41629fb67c30f0c40e5dc BinDiff against baseline)

898 function out of 907 functions matched had a similarity rating of 1.0 and
confidence of greater than 0.92. This binary is virtually identical to the baseline and
both come from the same code base.

Binary: 1bfdc4f2cfa48a1f063d1826992fbaf5e2924394

VirusTotal Results

Appendix D contains the detailed results from VirusTotal. 20 out of 43 anti-virus
engines in VirusTotal identified this binary as malicious.

Entry Point Execution Flow Analysis

PROPRIETARY AND CONFIDENTIAL

Page 13 of 42

Figure 6 (1bfdc4f2cfa48a1f063d1826992fbaf5e2924394 entry point)

Comparing Figure 1 and Figure 6 we see the code at their entry points are identical.

BinDiff Analysis

Due to the packer for this binary, BinDiff could not properly compare this binary
against the baseline.

Binary: bfcc02219321d1047cc0330454a61f6b276d06f6

Virus Total Results

Appendix E contains the detailed results from VirusTotal. 27 out of 43 anti-virus
engines in VirusTotal identified this binary as malicious.

PROPRIETARY AND CONFIDENTIAL

Page 14 of 42

Entry Point Execution Flow Analysis

Figure 7 (bfcc02219321d1047cc0330454a61f6b276d06f6 entry point)

Comparing Figure 1 and Figure 7 we see the code at their entry points are identical.

BinDiff Analysis

PROPRIETARY AND CONFIDENTIAL

Page 15 of 42

Figure 8 (bfcc02219321d1047cc0330454a61f6b276d06f6 BinDiff against baseline)

899 out of 907 function had a similarity rating of 1.0 with confidence rating greater
than 0.88. This binary is nearly identical to the baseline and must have been
compiled from the same code base.

Initial Conclusion

After using entry point analysis and bindiff on the unpacked version of the binaries
we are able to conclude that all 5 binaries were compiled from the same code base.

Follow-Up Questions

1. Are these binaries similar to Zeus, and if so, how similar?
2. Were these binaries compiled with a Microsoft toolchain, and what evidence

supports this?

Fortunately, copies of the source code to Zeus have been made publicly available.
Our manual analysis of the recovered applications revealed many structural
similarities (see figure 9), but do these structural similarities originate from Zeus?
To answer this question, we compiled our own copy of Zeus and compared our copy
to each of the programs described so far.

PROPRIETARY AND CONFIDENTIAL

Page 16 of 42

We first compiled Zeus in the 'release' configuration with symbols and compared it
to the unpacked version we were given with BinDiff.

Figure 9 (Compiled Zeus with Symbols against baseline)

BinDiff shows us the baseline and our compiled version is identical. 895 total
functions were matched. 703 of those were functions had an associated symbol
name. 698 out of the 895 matched functions had a similarity rating of 1.00 and
confidence value of 0.92 or greater. In other words: our samples are compiled
versions of Zeus.

Next we searched for functions within our copy of Zeus that had a very low
probability of being duplicated or copied by accident. We chose the screenshot logic,
the API interception logic, and VNC server implementation. In every case, there was
an exact or extremely high match in the control flow graph between our copy of
Zeus and the programs that we analyzed.

Programs are defined by a sequence of statements. Each statement is an instruction
to perform a discrete operation. These statements are linked together into a graph.
At every point where a program could do one thing or another, a statement can
conditionally branch to a new node in the graph. In this way, any logical instructions
can be represented by computer code.

PROPRIETARY AND CONFIDENTIAL

Page 17 of 42

We used the Interactive Disassembler (IDA) to find and extract control flow graphs
from each of the applications we were given and also the copy of Zeus that we
compiled. Below are these graphs displayed:

Figure 10 (Our Compiled Zeus)

PROPRIETARY AND CONFIDENTIAL

Page 18 of 42

Figure 11 (2cc1076f3c6e65d0a59792b75370b04613258ffa hooking function)

PROPRIETARY AND CONFIDENTIAL

Page 19 of 42

Figure 12 (9b259bc255fef873f1e41629fb67c30f0c40e5dc hooking function)

PROPRIETARY AND CONFIDENTIAL

Page 20 of 42

Figure 13 (0cc6215d31e5e639a19b4ceb3d57ce64d62e9b2c hooking function)

PROPRIETARY AND CONFIDENTIAL

Page 21 of 42

Figure 14 (1bfdc4f2cfa48a1f063d1826992fbaf5e2924394 hooking function)

PROPRIETARY AND CONFIDENTIAL

Page 22 of 42

Figure 15 (bfcc02219321d1047cc0330454a61f6b276d06f6 hooking function)

We have highlighted in red all of the blocks that belong to a loop. Note that the
structure of this function is identical across each program. Each instance has a single
loop and the same sequence of tests. This function matches the function named
WaHook::_hook (Appendix G).

This source code is responsible for detouring APIs to hook routines supplied by
Zeus. These hook routines change the behavior of the operating system.

Another thing these similarities tell us is that it is highly likely that Microsoft
compilers were used to build this version of Zeus. We built Zeus with a Microsoft
compiler, and the following code was produced (from the above function):

PROPRIETARY AND CONFIDENTIAL

Page 23 of 42

The “push” statements are used to pass arguments to the call to the function
“VirtualProtect. We can find this exact block in each of the other programs control
flow graphs for this function:

…and they are identical.

We compiled this function from source code using the gcc compiler. The Intel
assembly language is very expressive and multiple statements are functionally
equivalent to each other. Which statements are used is a choice that the compiler
makes when it compiles the program. The choices that compilers make are generally
quite different. Here is the resulting assembly code for the above snippet as
produced by gcc:

PROPRIETARY AND CONFIDENTIAL

Page 24 of 42

The structure is radically different. Note that no “push” instructions are used.
However, the resulting code is still functionally equivalent.

We also performed a mechanized comparison of the structure of the control flow
graphs in each of the five programs, comparing the structure to that of the Zeus
binary we built from source. We would have a program perform static control flow
reconstructions from the program images, and then use a very simple algorithm to
discover functions within the program. Once it discovered functions within the
program, it extracts them into an intermediate form that can be analyzed with the
NetworkX graph analysis library.

We asked NetworkX which graphs in each program were identical to other graphs.
The results are below

Program # of
functions
identified

Functions in Zeus
matching
functions in those
programs

Compiled Zeus 154 -

0ccstage3.bin 139 125

1bfddump_.bin 100 103

9b25dump_.bin 139 125

bfccdump_.bin 139 125

2cc1076f3c6e65d0a59792b75370b04613258ffa 138 125

This shows that for the functions we identified in these binaries, almost all of them
are structurally identical to functions that are within Zeus.

Fuzzy Hashing

We used the industry standard 'fuzzy' hashing technique via the ssdeep program to
compare the unpacked binaries. The fuzzy hashing method works on byte-level
similarity. It can be confused by function reordering and other simple obfuscation
techniques.

Three of the files we analyzed, 9b25dump_.bin, 0ccstage3.bin, and bfccdump_.bin,
were found to be similar to each other using fuzzy hashing. This result gives us a

PROPRIETARY AND CONFIDENTIAL

Page 25 of 42

high degree of confidence that these three files are essentially the same. They have
large stretches of identical patterns of bytes.

PROPRIETARY AND CONFIDENTIAL

Page 26 of 42

Phase II

We were given another set of binaries and asked to analyze and compare the
capabilities of a sample from all three sets of binaries.

PCRE

This sample set contained no valid win32 applications to analyze. These binaries are
likely encoded with a password that was not provided.

SPYEYE

In this sample set we chose the file with the hash:

b33064449295083dbfec12634523d805

because the first layer of obfuscation was UPX which, due to time constraints,
reduced the amount of time required to get the original binary. This file was a valid
win32 application, but had two layers of obfuscation. The first layer was UPX. The
second layer was not determined, but we were able extract a binary that closely
resembles the original. After some reverse engineering the capabilities of this
binary are:

● Window enumeration
● Take screenshot of desktop
● Retrieve clipboard data
● keyboard logging
● Retrieve system information
● Communicate with C&C server using HTTP
● Enumerate user accounts
● File Search
● Remote process code injection
● Manipulate Windows registry
● Process enumeration
● Read arbitrary file contents
● Standard TCP socket communication
● Download and execute payloads

ICE-IX

In this sample we chose the file with the hash:

3c6839c4ce744c9c0ddf2ba06963c3f4

PROPRIETARY AND CONFIDENTIAL

Page 27 of 42

Because it was not obfuscated. After reverse engineering the binary the capabilities
of this binary are:

● Take screenshot of desktop
● Remote process code injection
● Retrieve system information
● User account enumeration
● keyboard logging
● Process enumeration
● File search capability
● Get contents of arbitrary file
● Encrypt/Decrypt data using the Windows crypto API
● Manipulate Windows registry
● Communicate with C&C via HTTP
● Standard TCP socket communication
● Download and execute payloads

Zeus

Taking a closer look at our Zeus binaries and comparing them to Spyeye and ICE-IX
functionality is very similar. Here is a list of the functionality Zeus supports

● Take screenshot of desktop
● Remote process code injection
● Retrieve system information
● keyboard logging
● VNC server
● HTTP injection
● Communicate with C&C via HTTP
● Download and execute payloads
● Process enumeration
● Self delete using bat file
● intercept Windows API functions
● Manipulate Windows registry

Conclusion

Based on the functionality of all the samples we analyzed, they all had a very similar
set of capabilities that can be attributed to malicious intent.

E-mail Analysis

We were also given e-mails that had been sent purporting to be from NACHA but
had actually originated from malware authors. The e-mails were sent with the intent

PROPRIETARY AND CONFIDENTIAL

Page 28 of 42

to compromise computers of the recipients. These e-mails are easy to find as their
subject and body contain references to an ACH payment being rejected. The e-mails
direct the recipient to a URL that the e-mail states is a Microsoft Word document
providing more information. Actually, the URL in the e-mail is a link to a website
that hosts malicious software.

For example, in an e-mail (file 11905A7A-00000B01.eml), an e-mail originally sent
on Thu, 15 Feb 2012 with the subject “Your ACH transfer” purports to inform the
recipient that an ACH transaction involving their account has failed.

It contains a URL to a “Transaction report”:

<td><a href="http://kurabiyeji.com/JXt8y6Au/index.html"
>report_7429595642193.doc (Microsoft Word Document) </td>

The content hosted at this URL is known to be malicious by VirusTotal. The clean-
mx.de database reports that the URL is known to be malicious:

(http://support.clean-mx.de/clean-
mx/viruses.php?domain=kurabiyeji.com&sort=first%20desc)

VirusTotal reports the file served by that domain is malicious and detected as:

Antivirus Result Update
nProtect Trojan.Agent.AUIJ 20120222
CAT-QuickHeal - 20120222
McAfee - 20120223
K7AntiVirus - 20120222
TheHacker - 20120222
VirusBuster - 20120222
NOD32 JS/TrojanDownloader.HackLoad.AH 20120223
F-Prot JS/Redir.IO 20120222
Symantec - 20120223
Norman - 20120222
ByteHero - 20120225
TrendMicro-HouseCall - 20120223
Avast HTML:Script-inf 20120223
eSafe - 20120221
ClamAV - 20120223
Kaspersky Trojan.HTML.Redirector.z 20120223
BitDefender Trojan.Agent.AUIJ 20120223
ViRobot - 20120222
Emsisoft Trojan.HTML.Redirector!IK 20120223
Comodo UnclassifiedMalware 20120223
F-Secure Trojan.Agent.AUIJ 20120223

PROPRIETARY AND CONFIDENTIAL

Page 29 of 42

DrWeb - 20120223
VIPRE - 20120222
AntiVir - 20120222
TrendMicro - 20120222
McAfee-GW-Edition - 20120222
Sophos Mal/JSRedir-H 20120223
eTrust-Vet - 20120222
Jiangmin - 20120222
Antiy-AVL - 20120213
Microsoft Trojan:JS/BlacoleRef.AA 20120222
SUPERAntiSpyware - 20120206
Prevx - 20120227
GData Trojan.Agent.AUIJ 20120223
AhnLab-V3 JS/Blacoleref 20120222
VBA32 - 20120222
PCTools - 20120221
Rising - 20120223
Ikarus Trojan.HTML.Redirector 20120223
Fortinet - 20120223
AVG - 20120223
Panda - 20120222

PROPRIETARY AND CONFIDENTIAL

Page 30 of 42

Appendix A

Binary: 2cc1076f3c6e65d0a59792b75370b04613258ffa Virus Total Results

AhnLab-V3 Trojan/Win32.Zbot 20120107

AntiVir TR/Hijacker.Gen 20120106

Antiy-AVL Trojan/Win32.Zbot.gen 20120107

Avast Win32:Zbot-NRC [Trj] 20120107

AVG PSW.Generic9.AUZR 20120108

BitDefender Gen:Variant.Kazy.1779 20120108

ByteHero Trojan.Win32.Heur.Gen 20111231

CAT-QuickHeal - 20120107

ClamAV Trojan.Spy.Zbot-142 20120107

Commtouch W32/Zbot.BR.gen!Eldorado 20120107

Comodo UnclassifiedMalware 20120107

DrWeb Trojan.PWS.Panda.1545 20120108

Emsisoft Trojan-Spy.Win32.Zbot!IK 20120108

eSafe - 20120103

eTrust-Vet Win32/Zbot.CXZ 20120106

F-Prot W32/Zbot.BR.gen!Eldorado 20120107

F-Secure Gen:Variant.Kazy.1779 20120108

Fortinet W32/Zbot.AT!tr 20120107

GData Gen:Variant.Kazy.1779 20120108

Ikarus Trojan-Spy.Win32.Zbot 20120107

Jiangmin - 20120107

K7AntiVirus Riskware 20120106

PROPRIETARY AND CONFIDENTIAL

Page 31 of 42

Kaspersky Trojan-Spy.Win32.Zbot.ctaq 20120108

McAfee PWS-Zbot.gen.ds 20120108

McAfee-GW-Edition PWS-Zbot.gen.ds 20120107

Microsoft PWS:Win32/Zbot.gen!Y 20120107

NOD32 Win32/Spy.Zbot.YW 20120108

Norman W32/Zbot.VAL 20120107

nProtect Gen:Variant.Kazy.1779 20120107

Panda Generic Trojan 20120107

PCTools - 20120108

Prevx - 20120108

Rising - 20120106

Sophos Troj/PWS-BSF 20120107

SUPERAntiSpyware - 20120107

Symantec - 20120108

TheHacker - 20120106

TrendMicro TROJ_GEN.FFFCBLU 20120107

TrendMicro-HouseCall TROJ_GEN.FFFCBLU 20120108

VBA32 SScope.Trojan.FakeAV.01110 20120106

VIPRE Trojan-Spy.Win32.Zbot.val (v) 20120108

ViRobot - 20120107

VirusBuster TrojanSpy.Zbot!/ky2LKcfC2c 20120107

PROPRIETARY AND CONFIDENTIAL

Page 32 of 42

Appendix B

Binary: 0cc6215d31e5e639a19b4ceb3d57ce64d62e9b2c Virus Total Results

AhnLab-V3 Trojan/Win32.FakeAV 20120102

AntiVir TR/Kazy.48131.4 20120102

Antiy-AVL Trojan/Win32.Injector.gen 20120102

Avast Win32:MalOb-HP [Cryp] 20120102

AVG Generic26.ZLQ 20120102

BitDefender Gen:Variant.Kazy.48131 20120102

ByteHero - 20111231

CAT-QuickHeal - 20120102

ClamAV - 20120102

Commtouch - 20120102

Comodo Heur.Suspicious 20120102

DrWeb - 20120102

Emsisoft Trojan-Spy.Win32.SpyEyes!IK 20120102

eSafe Win32.TRKazy 20120101

eTrust-Vet - 20120102

F-Prot - 20120102

F-Secure Gen:Variant.Kazy.48131 20120102

Fortinet W32/Rorpian.C!tr 20120102

GData Gen:Variant.Kazy.48131 20120102

Ikarus Trojan-Spy.Win32.SpyEyes 20111231

Jiangmin - 20120101

K7AntiVirus Trojan 20120102

PROPRIETARY AND CONFIDENTIAL

Page 33 of 42

Kaspersky Trojan-Dropper.Win32.Injector.aiaz 20120102

McAfee Artemis!98E1ECD8C6D7 20120102

McAfee-GW-Edition Artemis!98E1ECD8C6D7 20120101

Microsoft PWS:Win32/Zbot 20120102

NOD32 a variant of Win32/Kryptik.XDP 20120102

Norman W32/Suspicious_Gen2.UDXVY 20120102

nProtect - 20120102

Panda Trj/CI.A 20120102

PCTools - 20120102

Prevx - 20120102

Rising - 20111231

Sophos Mal/Rorpian-D 20120102

SUPERAntiSpyware - 20111230

Symantec WS.Reputation.1 20120102

TheHacker Trojan/Dropper.Injector.aiaz 20111231

TrendMicro TROJ_FAKEAV.BMC 20120102

TrendMicro-HouseCall TROJ_FAKEAV.BMC 20120102

VBA32 TrojanDropper.Injector.aiaz 20120102

VIPRE Trojan.Win32.Generic!BT 20120102

ViRobot - 20120102

VirusBuster - 20120102

PROPRIETARY AND CONFIDENTIAL

Page 34 of 42

Appendix C

Binary: 9b259bc255fef873f1e41629fb67c30f0c40e5dc Virus Total Results

AhnLab-V3 Trojan/Win32.Zbot 20111218

AntiVir - 20111216

Antiy-AVL - 20111218

Avast Win32:Malware-gen 20111218

AVG PSW.Generic9.AVXE 20111218

BitDefender Trojan.Generic.KDV.481715 20111218

ByteHero Trojan.Win32.Heur.Gen 20111207

CAT-QuickHeal - 20111218

ClamAV - 20111218

Commtouch W32/Zbot.DD7.gen!Eldorado 20111217

Comodo TrojWare.Win32.Trojan.Agent.Gen 20111218

DrWeb - 20111218

Emsisoft Trojan-PWS.Win32.Zbot!IK 20111218

eSafe - 20111215

eTrust-Vet - 20111216

F-Prot W32/Zbot.DD7.gen!Eldorado 20111217

F-Secure Trojan.Generic.KDV.481715 20111218

Fortinet W32/Zbot.EZ!tr.pws 20111218

GData Trojan.Generic.KDV.481715 20111218

Ikarus Trojan-PWS.Win32.Zbot 20111218

Jiangmin - 20111218

K7AntiVirus - 20111215

PROPRIETARY AND CONFIDENTIAL

Page 35 of 42

Kaspersky Trojan-Spy.Win32.Zbot.ctnl 20111218

McAfee PWS-Zbot.gen.hb 20111218

McAfee-GW-Edition PWS-Zbot.gen.hb 20111218

Microsoft PWS:Win32/Zbot.gen!Y 20111218

NOD32 probably a variant of Win32/Spy.Agent.MOVGWFV 20111218

Norman - 20111218

nProtect - 20111218

Panda Trj/CI.A 20111218

PCTools - 20111218

Prevx - 20111218

Rising - 20111216

Sophos Mal/Zbot-EZ 20111218

SUPERAntiSpyware - 20111217

Symantec - 20111218

TheHacker - 20111218

TrendMicro - 20111218

TrendMicro-HouseCall TROJ_GEN.R3EC7LI 20111218

VBA32 - 20111214

VIPRE Trojan.Win32.Generic!BT 20111218

ViRobot - 20111218

VirusBuster - 20111218

PROPRIETARY AND CONFIDENTIAL

Page 36 of 42

Appendix D

Binary: 1bfdc4f2cfa48a1f063d1826992fbaf5e2924394 Virus Total Results

AhnLab-V3 Spyware/Win32.Zbot 20120107

AntiVir TR/Offend.7118272.1 20120106

Antiy-AVL - 20120107

Avast Win32:Spyware-gen [Spy] 20120107

AVG PSW.Generic9.BAQF 20120107

BitDefender - 20120107

ByteHero - 20111231

CAT-QuickHeal - 20120107

ClamAV - 20120107

Commtouch - 20120107

Comodo - 20120107

DrWeb Trojan.PWS.Panda.547 20120107

Emsisoft Trojan-PWS.Win32.Zbot!IK 20120107

eSafe - 20120103

eTrust-Vet - 20120106

F-Prot - 20120107

F-Secure - 20120107

Fortinet W32/Zbot.DDHL!tr 20120107

GData Win32:Spyware-gen 20120107

Ikarus Trojan-PWS.Win32.Zbot 20120107

Jiangmin - 20120107

K7AntiVirus Spyware 20120106

PROPRIETARY AND CONFIDENTIAL

Page 37 of 42

Kaspersky Trojan-Spy.Win32.Zbot.ddhl 20120107

McAfee PWS-Zbot 20120107

McAfee-GW-Edition PWS-Zbot 20120107

Microsoft PWS:Win32/Zbot 20120107

NOD32 Win32/Spy.Zbot.YW 20120107

Norman - 20120107

nProtect - 20120107

Panda Trj/CI.A 20120107

PCTools - 20120107

Prevx - 20120107

Rising - 20120106

Sophos - 20120107

SUPERAntiSpyware - 20120107

Symantec - 20120107

TheHacker - 20120106

TrendMicro TROJ_GEN.FFFCBA2 20120107

TrendMicro-HouseCall TROJ_GEN.FFFCBA2 20120107

VBA32 - 20120106

VIPRE Trojan.Win32.Generic!BT 20120107

ViRobot - 20120107

VirusBuster TrojanSpy.Zbot!Z8zuEWTrK2A 20120107

PROPRIETARY AND CONFIDENTIAL

Page 38 of 42

Appendix E

Binary: bfcc02219321d1047cc0330454a61f6b276d06f6 Virus Total Results

AhnLab-V3 Trojan/Win32.Agent 20111217

AntiVir TR/PSW.Zbot.Y.2082 20111216

Antiy-AVL Trojan/win32.agent.gen 20111217

Avast Win32:Spyware-gen [Spy] 20111217

AVG PSW.Generic9.AVOM 20111217

BitDefender Gen:Variant.Kazy.48419 20111217

ByteHero Trojan.Win32.Heur.Gen 20111207

CAT-QuickHeal - 20111217

ClamAV - 20111217

Commtouch - 20111217

Comodo TrojWare.Win32.Trojan.Agent.Gen 20111217

DrWeb Trojan.PWS.Panda.1533 20111217

Emsisoft Trojan-Spy.Win32.Zbot!IK 20111217

eSafe - 20111215

eTrust-Vet - 20111216

F-Prot - 20111217

F-Secure Gen:Variant.Kazy.48419 20111217

Fortinet W32/Zbot.EZ!tr.pws 20111217

GData Gen:Variant.Kazy.48419 20111217

Ikarus Trojan-Spy.Win32.Zbot 20111217

Jiangmin - 20111217

K7AntiVirus Spyware 20111215

PROPRIETARY AND CONFIDENTIAL

Page 39 of 42

Kaspersky Trojan-Spy.Win32.Zbot.csyl 20111217

McAfee PWS-Zbot.gen.hb 20111217

McAfee-GW-Edition PWS-Zbot.gen.hb 20111216

Microsoft PWS:Win32/Zbot.gen!Y 20111217

NOD32 a variant of Win32/Kryptik.XGG 20111217

Norman - 20111217

nProtect - 20111217

Panda Trj/CI.A 20111217

PCTools Trojan.Gen 20111217

Prevx - 20111217

Rising - 20111216

Sophos Mal/Zbot-EZ 20111217

SUPERAntiSpyware - 20111217

Symantec Trojan.Gen.2 20111217

TheHacker - 20111216

TrendMicro TROJ_GEN.FFFCZLF 20111217

TrendMicro-HouseCall TROJ_GEN.FFFCZLF 20111217

VBA32 - 20111214

VIPRE Trojan.Win32.Generic!BT 20111217

ViRobot - 20111217

VirusBuster - 20111216

PROPRIETARY AND CONFIDENTIAL

Page 40 of 42

Appendix F

DWORD WaHook::_hook(HANDLE process, void *functionForHook, void *hookerFunction, void
*originalFunction, HOTPATCHCALLBACK hotPatchCallback)

{
 DWORD retVal = 0;

 DWORD oldProtect;
 DWORD_PTR avalibeBytes = checkAvalibleBytes(process, functionForHook);

 //Äàåì âñå ïðàâà çàòðàãèâàåìûì ñòðàíèöàì.
 if(avalibeBytes >= OPCODE_MAX_SIZE * 2 && CWA(kernel32,

VirtualProtectEx)(process, functionForHook, OPCODE_MAX_SIZE * 2, PAGE_EXECUTE_READWRITE,
&oldProtect) != 0)

 {
 //Ñ÷èòûâàåì ñòàðûé êîä.
 BYTE buf[OPCODE_MAX_SIZE * 2 + JMP_ADDR_SIZE];
 Mem::_set(buf, (char)0x90, sizeof(buf));/*ïàðàíîÿ*/

 if(CWA(kernel32, ReadProcessMemory)(process, functionForHook, buf,

OPCODE_MAX_SIZE * 2, NULL) == 0)goto END;

 //×èòàåì îïêîäû, ïîêà èõ ñóììàðíàÿ äëèíà íå äîñòèãíèò INJECT_SIZE.
 DWORD_PTR opcodeOffset = 0;
 for(;;)
 {
 LPBYTE currentOpcode = buf + opcodeOffset;
 DWORD currentOpcodeLen = Disasm::_getOpcodeLength(currentOpcode);

 //Íåèçâåñòíûé îïêîä.
 if(currentOpcodeLen == (DWORD)-1)
 {
 #if defined(WDEBUG2)
 WDEBUG2(WDDT_ERROR, "Bad opcode detected at offset %u for function 0x%p",

opcodeOffset, functionForHook);
 #endif

 goto END;
 }

 opcodeOffset += currentOpcodeLen;

 if(opcodeOffset > sizeof(buf) - JMP_ADDR_SIZE)
 {
 #if defined(WDEBUG2)
 WDEBUG2(WDDT_ERROR, "Very long opcode detected at offset %u for function

0x%p", opcodeOffset - currentOpcodeLen, functionForHook);
 #endif

 goto END;
 }

 //Îòíîñòèåëüíûå call è jmp.
 if((currentOpcode[0] == 0xE9 || currentOpcode[0] == 0xE8) &&

currentOpcodeLen == 1 + sizeof(DWORD)) //FIXME: íå óâåðåí äëÿ x64.
 {
if defined(WDEBUG0)
 WDEBUG1(WDDT_INFO, "Relative JMP/CALL(%02X) detected.", currentOpcode[0]);
endif

 DWORD *relAddrSet = (DWORD *)(currentOpcode + 1);
 DWORD_PTR to = (*relAddrSet) + ((DWORD_PTR)functionForHook +

opcodeOffset);
 *relAddrSet = (DWORD)(to - ((DWORD_PTR)originalFunction + opcodeOffset));
 }

 if(opcodeOffset >= INJECT_SIZE)break;
 }

PROPRIETARY AND CONFIDENTIAL

Page 41 of 42

 //Ñîõðàíÿåì îðèãèíàëüíûå îïêîäû â originalFunction.
 {
 //Äîïèñûâàåì â êîíåö áóôåðà, jump íà ïðîäîëæåíèå functionForHook.
 LPBYTE pjmp = buf + opcodeOffset;
 WRITE_JMP(pjmp, originalFunction/* + opcodeOffset*/, functionForHook/* +

opcodeOffset*/);
 if(CWA(kernel32, WriteProcessMemory)(process, originalFunction, buf,

opcodeOffset + JMP_ADDR_SIZE, NULL) == 0)goto END;
 }

 //Ïèøèì èíæåêò â ôóíêöèþ.
 {
 WRITE_JMP(buf, functionForHook, hookerFunction);
 hotPatchCallback(functionForHook, originalFunction);
 if(CWA(kernel32, WriteProcessMemory)(process, functionForHook, buf,

INJECT_SIZE, NULL) == 0)goto END;
 }

 retVal = opcodeOffset + JMP_ADDR_SIZE; //Ðàçìåð âûðåçàíîãî ôðàãìåíòà.

END:
 //Âîññòàíàëèâàåì ïðàâà.
 CWA(kernel32, VirtualProtectEx)(process, functionForHook, OPCODE_MAX_SIZE * 2,

oldProtect, &oldProtect);
 }

 return retVal;
}

Raw data on what ‘file’ says each file is:

munin@ubuntu-dev:~/sample_set_1$ find ./ -exec file '{}' \;
./: directory
./0231ced00c5e62deba427fa785e19e0481a21e5a: data
./fa3e447fcb80d73284c1ec082ecec8b5e8c69290: data
./9e3bc6596fe0ff57312ba7fe9144dfbb7321f5d5: data
./63552eb629f61e2c80f97f6b71394875ce18639d: data
./c014dafb8cd26a777e6abc94bb01a814e29c0dc9: DOS executable (COM)
./8e2adb39e651c50c9fd7cfeef66f27b4cded27f1: data
./9569c711275524c5c00547f0c90be3d2b36252d1: DOS executable (COM)
./efb2e69a4c2a74f1688166881a61477fc38cc486: data
./53cecd632d2fe0cd4416ce32d7767f0f39e24223: data
./cfbc6664715190458b3e5a83d22895507ff35f4f: data
./e2e44b8114f07cee665a21f0450a727326b3d341: data
./19174b7f1897b786e914ad6e7932d0d82f086c2e: data
./e8edff3539053ebfbf79fdaeded6c3234a76de5b: data
./4c2ba64f8f975f752fc33f77733dd7df7b10064f: data
./3c12b15eb7b453d0230bc5c476b2acc2e69b14e5: data
./ae713567f6ebe908ebb9925d7ef65967b52571a4: data
./6b7dd7e579c9f6cc1276f183d0397800a9b5497b: data
./9e2a7be7d2f7a055ef8fe9a89325991158f3425c: Macintosh MFS data (locked)
created: Thu Dec 12 22:26:15 2052, last backup: Thu May 22 21:48:39
2003, block size: 390163271, number of blocks: 38443, volume name:
z\313\277\200{\224%=`9\274\375\275\273X\022\260\261_n
./cf90b2dcf802a44938cbe44774add891354bcb56: data
./8d4f841ffc243ce69c7a2ab2ebd45fc11623d14b: data
./ec8d707213a73c8978472d62d5578e5bf83e1f85: data
./ccdd65b99ded0f2c68d0b81525fab194f88d9052: data
./245dd76226340ba68e8e7c69ad558887e4cca708: data
./400ad5fb66574398e036ae817b653bcdabe7ca77: data
./ec9833c61f4547ba7c3f93b55eeccb4b8aabd516: data

PROPRIETARY AND CONFIDENTIAL

Page 42 of 42

./2ebbc25ad676d9fddcf9483e184f0df193da275e: data

./fd441b7b7cf3c56e12ea8bdbf5dcc712f5b51aee: data

./a8a422e21a040291cdb5cb676b3769fb5dfebb30: data

./8602882e53520155be5bf35e447b6a51d5c060a2: ASCII HTML document text

./71fc9a3c9332259716e8e60692cef4bbf8b46263: data

./b002711696f7b2dafc812e6b75a7bdefeb68848b: ASCII HTML document text,
with very long lines
./758ba418c1cffa97bc67b8f928095d6164cfbccb: data
./58fbfba34100d8252a35fb80a49220cbe742cddc: data
./7743d59c358a9830fa8a861e227f30f20395b0da: data
./89ccfe53c1fe40ad606ca75bb7bfa17aa470d7b4: data
./c6db00d3860ec87a80b9e681cce9bd360356a9fd: data
./1bfdc4f2cfa48a1f063d1826992fbaf5e2924394: PE32 executable for MS
Windows (GUI) Intel 80386 32-bit
./c0784b799676b1da42f7ddb0c260484aecc02b16: data
./09f11524999469ecbed82b80f6034bc2bc7df6e9: data
./748f7b05ecd7cf5d09902334fdcc04b255394379: HTML document text
./e86834d32fe96a51f6c1a0cfd62764522c4659ad: data
./adafa84402214d74744794c7bac6e886e5012ffd: data
./b858cb282617fb0956d960215c8e84d1ccf909c6: very short file (no magic)
./697490076065b855c6f417a79ac9d69e7553008a: data
./b3da6a5e6ed5ef18d7c9fd9a570f01a850cc9867: data
./be080fcef59cd497eb9f686b90669f7413795187: data
./a2c35aa79379a3e72ad0607abbfe6095d5f4539d: SoftQuad troff Context
intermediate
./d2200e1a1587878a2c68ee66007226039ff23ec9: data
./2428aad59d5abb344f96273724147b9c24ffbc7d: ASCII text, with CRLF line
terminators
./ef99005f5ed1d8db4aa57e5c4fd1da040e370115: DBase 3 data file with
memo(s)
./d649b4d83a0d0a2c571187b79d9c815255c44feb: data
./14156629bf2f3c9bbd6a599dd64b6808bd0b28b6: data
./c19ae7572f1592d798e96d7a09b76e63c3b341b1: data
./2cc1076f3c6e65d0a59792b75370b04613258ffa: PE32 executable for MS
Windows (GUI) Intel 80386 32-bit
./4089097915b5de378c9ffb0180f02790f48d4d21: DOS executable (COM)
./5c286793eb1ed4ef94932b8b1ef0fd03795d083b: data
./a11719211d886dbe060ebc6348f6f60c603cc40c: data
./5a7f37bc8481bd35863debfc113e19381c2d9fb4: data
./7c0dcde7e13dbc350eb8fc45100edcf526633be2: data
./ef7c1a5991f95ed3c61f6f88bc0d03cd2a0f2d32: data
./10b512c811fa173d2dcfb7796d5b312e2e91d629: data
./bfcc02219321d1047cc0330454a61f6b276d06f6: PE32 executable for MS
Windows (GUI) Intel 80386 32-bit
./c155efdb8e846076fc7ecc44006556f0974bcace: DOS executable (COM)
./0cc6215d31e5e639a19b4ceb3d57ce64d62e9b2c: PE32 executable for MS
Windows (GUI) Intel 80386 32-bit
./9b259bc255fef873f1e41629fb67c30f0c40e5dc: PE32 executable for MS
Windows (GUI) Intel 80386 32-bit
./22b4eccfc0fb59acefa2140992e12d0d6f5defc2: data
./cd195e5943b68637b57eac9a916cc742b2599e89: data
./eab52fcdfcff2f7d875a0fd6b41f7842cde93ebb: data
./fd6f8c968854e9ca3d336e03cd3221c25be8cd5d: data
./8b591e9324afb0c641b4c0e68c0c0e7ae9ddc2fb: data

Some of them are HTML, though none appear to have any unusual or suspect traits.

